Article Friendly article publishing script homepage.
Translate Page To German Tranlate Page To Spanish Translate Page To French Translate Page To Italian Translate Page To Japanese Translate Page To Korean Translate Page To Portuguese Translate Page To Chinese
  Number Times Read : 28     Word Count: 620  
Stats
Total Articles: 81111
Total Authors: 113708
Total Downloads: 11652


Newest Member
Berniece Lamington

 
You are at : Home | Miscellaneous

 

A study led by researchers at Stanford's School of Medicine



[Valid RSS feed]  Category Rss Feed - http://www.medicalsupportforum.com/rss.php?rss=528
By : Rolando Hjort    19 or more times read
Submitted 2015-06-03 08:44:32
X-ray studies at the Department of Energy's SLAC National Accelerator Laboratory, combined with Stanford http://www.selleckchem.com/products/nlg919.html, http://www.selleckchem.com/products/BIRB-796-(Doramapimod).html, http://www.selleckchem.com/products/arq-197.html biological studies and computational analysis, revealed remarkable similarities in the structure of binding sites, which allow a given T cell to recognize many different invaders that provoke an immune response.It also may lead to a better understanding of what T cells recognize when fighting cancers and why they are triggered to attack healthy cells in autoimmune diseases such as diabetes and multiple sclerosis."Until now, it often has been a real mystery which antigens T cells are recognizing; there are whole classes of disease where we don't have this information," said Michael Birnbaum, a graduate student who led the research at the School of Medicine in the laboratory of K. Christopher Garcia, the study's senior author and a professor of molecular and cellular physiology and of structural biology."Now it's far more feasible to take a T cell that is important in a disease or autoimmune disorder and figure out what antigens it will respond to," Birnbaum said.T cells are triggered into action by protein fragments, displayed on a cell's surface. In the case of an infected cell, peptide antigens from a pathogen can trigger a T cell to kill the infected cell. The research provides a sort of rulebook that can be used with high success to track down antigens likely to activate a given T cell, easing a bottleneck that has constrained such studies.Combination approachIn the study, researchers exposed a handful of mouse and human T-cell receptors to hundreds of millions of peptides, and found hundreds of peptides that bound to each type. Then they compiled and compared the detailed sequence -- the order of the chemical building blocks -- of the peptides that bound to each T-cell receptor.From that sample set, which represents just a tiny fraction of all peptides, a detailed computational analysis identified other likely binding matches. Researchers compared the 3-D structures of T cells and their unique receptors bound to different peptides at SLAC's Stanford Synchrotron Research Lightsource (SSRL)."The X-ray work at SSRL was a key breakthrough in the study," Birnbaum said. "Very different peptides aligned almost perfectly with remarkably similar binding sites. It took us a while to figure out this structural similarity was a common feature, not an oddity -- that a vast number of unique peptides could be recognized in the same way."Researchers also checked the sequencing of the peptides that were known to bind with a given T cell and found striking similarities there, too."T-cell receptors are 'cross-reactive,' but in fairly limited ways. Like a multilingual person who can speak Spanish and French but can't understand Japanese, a receptor can engage with a broad set of peptides related to one another," Birnbaum said.Impact on biomedical scienceFinding out whether a given peptide activates a specific T-cell receptor has been a historically piecemeal process with a 20 to 30 percent success rate, involving burdensome hit-and-miss studies of biological samples. "This latest research provides a framework that can improve the success rate to as high as 90 percent," Birnbaum said."This is an important illustration of how SSRL's X-ray-imaging capabilities allow researchers to get detailed structural information on technically very challenging systems," said Britt Hedman, professor of photon science and science director at SSRL.
Author Resource:- I am an MBBS doctor and I graduated from Harvard University. I has been working at Pakistans most famous Shiekh Zaid Hospital¯ for two years and is also a research scholar. I am working in medicine research or medicine development especially inhibitors using knowledge gained by basic research to develop new drugs, treatments, medical diagnostic tests and develop new inhibitor for cancer and other research.
Article From Medical Articles Directory - MedicalSupportForum.com

Related Articles

HTML Ready Article. Click on the "Copy" button to copy into your clipboard.




Firefox users please select/copy/paste as usual
Rate This Article
Vote to see the results!

Do you like this article?
  • Yes.
  • Not Sure.
  • No.
New Members
select
Sign up
select
learn more
Affiliate Sign in
Affiliate Sign In
 
Nav Menu
Home
Login
Submit Articles
Submission Guidelines
Top Articles
Link Directory
About Us
Contact Us
Privacy Policy
RSS Feeds

Actions
Print This Article
Add To Favorites

 
Sponsors